
Order Number: 324255-002US

Intel® Platform Controller Hub
EG20T
Controller Area Network (CAN) Driver for Windows* Programmer’s
Guide

February 2011

Intel® Platform Controller Hub EG20T CAN Driver
Programmer’s Guide February 2011
2 Order Number: 324255-002US

Legal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE
FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics
of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with
this information.
The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or go to: http://www.intel.com/#/en_US_01.
Any software source code reprinted in this document is furnished under a software license and may only be used or copied in accordance with the terms
of that license.
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different
processor families. Go to: http://www.intel.com/products/processor%5Fnumber/ for details.
α Intel® Hyper-Threading Technology requires a computer system with a processor supporting Intel® HT Technology and an Intel® HT Technology-
enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use. For more information
including details on which processors support Intel® HT Technology, see http://www.intel.com/products/ht/hyperthreading_more.htm.
β Intel® High Definition Audio requires a system with an appropriate Intel® chipset and a motherboard with an appropriate CODEC and the necessary
drivers installed. System sound quality will vary depending on actual implementation, controller, CODEC, drivers and speakers. For more information
about Intel® HD audio, refer to http://www.intel.com/.
χ 64-bit computing on Intel® architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications
enabled for Intel® 64 architecture. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for
more information.
δ Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM) and, for some
uses, certain computer system software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software
configurations and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your
application vendor.
ε The original equipment manufacturer must provide Intel® Trusted Platform Module (Intel® TPM) functionality, which requires an Intel® TPM-supported
BIOS. Intel® TPM functionality must be initialized and may not be available in all countries.
θ For Enhanced Intel SpeedStep® Technology, see the Processor Spec Finder or contact your Intel representative for more information.
I2C* is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C* bus/protocol and was developed by Intel.
Implementations of the I2C* bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips
Corporation.
BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Core Inside, i960, Intel, the Intel logo, Intel AppUp, Intel Atom, Intel Atom Inside, Intel
Core, Intel Inside, the Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel Sponsors of
Tomorrow., the Intel Sponsors of Tomorrow. logo, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, InTru, the InTru logo, InTru soundmark, Itanium,
Itanium Inside, MCS, MMX, Moblin, Pentium, Pentium Inside, skoool, the skoool logo, Sound Mark, The Journey Inside, vPro Inside, VTune, Xeon, and
Xeon Inside are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2011, Intel Corporation and/or its suppliers and licensors. All rights reserved.

http://www.intel.com/#/en_US_01
http://www.intel.com/products/processor%5Fnumber/
http://www.intel.com/products/ht/hyperthreading_more.htm
http://www.intel.com/
http://processorfinder.intel.com/

Intel® Platform Controller Hub EG20T CAN Driver
February 2011 Programmer’s Guide
Order Number: 324255-002US 3

Contents—Intel® Platform Controller Hub EG20T

Contents

1.0 Introduction ..6

2.0 Operating System (OS) Support ..7

3.0 Dependencies ..8

4.0 CAN Driver API Details ..9
4.1 Features ..9
4.2 Interface Details ...9
4.3 IOCTL Usage Details .. 10
4.4 Structures and Enumerations .. 11

4.4.1 Structures ... 11
4.4.1.1 ioh_can_msg_t... 11
4.4.1.2 ioh_can_timing_t.. 11
4.4.1.3 ioh_can_error_t.. 11
4.4.1.4 ioh_can_acc_filter_t .. 12
4.4.1.5 ioh_can_rx_filter_t.. 12

4.4.2 Enumerations .. 12
4.4.2.1 ioh_can_listen_mode_t.. 12
4.4.2.2 ioh_can_run_mode_t .. 12
4.4.2.3 ioh_can_arbiter_mode_t .. 13
4.4.2.4 ioh_can_restart_mode_t .. 13
4.4.2.5 ioh_can_baud_t.. 13
4.4.2.6 ioh_can_interrupt_t .. 13

4.5 Error Handling .. 14
4.6 Inter-IOCTL dependencies .. 14

5.0 Programming Guide... 15
5.1 Basic Flow .. 15
5.2 Opening the Device ... 15

5.2.1 Using GUID Interface Exposed by the Driver .. 16
5.3 Device Functionality... 16

5.3.1 CAN Device Configuration Options .. 16
5.3.2 CAN Filter Configuration .. 20
5.3.3 CAN Clock Configuration.. 21
5.3.4 Getting CAN Error Status... 22
5.3.5 Reading and Writing CAN Message.. 22
5.3.6 Configuring CAN Receive/Transmit Message Object 23
5.3.7 CAN Device Reset... 26

5.4 Closing the Device... 26

Tables
1 CAN Driver IOCTLs ...9
2 ioh_can_msg_t structure .. 11
3 ioh_can_timing_t structure.. 11
4 ioh_can_error_t structure ... 12
5 ioh_can_acc_filter_t structure.. 12
6 ioh_can_rx_filter_t structure ... 12
7 ioh_can_listen_mode_t enumeration .. 12
8 ioh_can_run_mode_t enumeration ... 13
9 ioh_can_arbiter_mode_t enumeration... 13
10 ioh_can_restart_mode_t enumeration... 13
11 ioh_can_baud_t enumeration .. 13

Intel® Platform Controller Hub EG20T —Contents

Intel® Platform Controller Hub EG20T CAN Driver
Programmer’s Guide February 2011
4 Order Number: 324255-002US

12 ioh_can_interrupt_t enumeration..14

Intel® Platform Controller Hub EG20T CAN Driver
February 2011 Programmer’s Guide
Order Number: 324255-002US 5

Revision History—Intel® Platform Controller Hub EG20T

Revision History

Date Revision Description

February 2011 002
Updated Section 2.0, “Operating System (OS) Support” on page 7
Added Section 5.2.1, “Using GUID Interface Exposed by the Driver” on page 16

September 2010 001 Initial release

Intel® Platform Controller Hub EG20T —Introduction

Intel® Platform Controller Hub EG20T CAN Driver
Programmer’s Guide February 2011
6 Order Number: 324255-002US

1.0 Introduction
Controller Area Network (CAN) is a multi-master broadcast serial bus standard for
connecting electronic control units (ECUs). Each node is able to send and receive
messages, but not simultaneously. A message consists primarily of an ID — usually
chosen to identify the message-type or sender — and up to eight data bytes. It is
transmitted serially onto the bus. This signal pattern is encoded in NRZ and is sensed
by all nodes. Devices that are connected by a CAN network are typically sensors,
actuators, and other control devices. These devices are not connected directly to the
bus, but through a host processor and a CAN controller.

If the bus is free, then any node may begin to transmit. If two or more nodes begin
sending messages at the same time, the message with more dominant ID (which has
more dominant bits, i.e., zeroes) will overwrite other nodes' less dominant IDs, so that
eventually (after this arbitration on the ID) only the dominant message remains and is
received by all nodes.

This document describes the CAN driver interfaces exposed to the user mode
applications and how to use those interfaces to drive the CAN hardware to achieve
effective communication.

Intel® Platform Controller Hub EG20T CAN Driver
February 2011 Programmer’s Guide
Order Number: 324255-002US 7

Operating System (OS) Support—Intel® Platform Controller Hub EG20T

2.0 Operating System (OS) Support
The CAN driver is supported by the following operating systems:

No OS Notes

1 Microsoft Windows XP* Service Pack 3

2 Windows Embedded Standard* 2009

3 Windows Embedded POSReady* 2009

4 Microsoft Windows 7*

5 Windows Embedded Standard7

Intel® Platform Controller Hub EG20T —Dependencies

Intel® Platform Controller Hub EG20T CAN Driver
Programmer’s Guide February 2011
8 Order Number: 324255-002US

3.0 Dependencies
The Intel® Platform Controller Hub EG20T CAN Hardware Assist driver is dependent
upon the Intel® Platform Controller Hub EG20T Packet Hub driver to set up the clock
frequency before the CAN operation can be started.

Intel® Platform Controller Hub EG20T CAN Driver
February 2011 Programmer’s Guide
Order Number: 324255-002US 9

CAN Driver API Details—Intel® Platform Controller Hub EG20T

4.0 CAN Driver API Details
The CAN driver exposes the interfaces through Input/Output Controls (IOCTLs), which
can be called from the user mode applications. The following sections provide
information about the IOCTLs of the driver and how to use them to drive the CAN
hardware successfully.

4.1 Features
The CAN driver supports:

• 32 message objects
• Setting bit rate up to 1 Mbits/sec
• Enabling the interruption to CAN hardware and setting the interrupt mask and

mode
• Disabling the interruption to CAN hardware
• Set or clear selected registers of CAN message object
• Getting the status of selected registers of CAN message object
• Reading the data of selected CAN message object, when the other CAN device

responds / event (interrupt) occurs
• Reading CAN hardware and bus status items
• FIFO mode select, programmable FIFO mode (concatenation of message objects) –

using FIFO mode or not
• CAN bus byte/multi-byte read transactions
• CAN bus byte/multi-byte write transactions
• Notification that can be sent back to the user mode by using a system wide event

object

4.2 Interface Details
Table 1 lists the IOCTLs supported by the CAN driver.

Table 1. CAN Driver IOCTLs (Sheet 1 of 2)

No Interface Description

1 IOCTL_CAN_RESET

Reset the CAN device. Issuing this IOCTL causes the
device to stop and reset. After the device has been
reset, the device must be reconfigured and explicitly set
to run.

2 IOCTL_CAN_RUN
Set the device to run. The device must be configured
(e.g., timing (baud rate), active/listen mode, etc.)
before using this command.

3 IOCTL_CAN_STOP
Stop all operations and the device. The device no longer
transmits or receives packets. However, interrupts are
still active.

4 IOCTL_CAN_RUN_GET Get the current run state. This returns whether the
device is currently running or stopped.

5 IOCTL_CAN_FILTER Set the receive filter for a particular receive buffer.

6 IOCTL_CAN_FILTER_GET Get the receive filter configuration for a particular
receive buffer.

Intel® Platform Controller Hub EG20T —CAN Driver API Details

Intel® Platform Controller Hub EG20T CAN Driver
Programmer’s Guide February 2011
10 Order Number: 324255-002US

4.3 IOCTL Usage Details
This section provides the details for configuring the CAN interface and initiating CAN
operations. The following files contain the details of the IOCTLs and data structures
used for the configuration.

7 IOCTL_CAN_CUSTOM

Set the timing (i.e., baud rate) via custom timing
values. Every aspect of the CAN timing must be
specified. This should be used when the recommended
timings cannot be used.

8 IOCTL_CAN_SIMPLE Set the timing (baud rate) using one of the pre-defined
recommended timings.

9 IOCTL_CAN_TIMING_GET Get the current timing values.

10 IOCTL_CAN_BLOCK

Set file read and write operation to block. The read
operation will wait until a buffer is received before
returning. The write operation will not return until the
message has been transmitted.

11 IOCTL_CAN_NON_BLOCK

Set file read and write operation to not block. The read
operation returns immediately. If a message is waiting,
the read operation is returned with that message.
Otherwise, the operation returns without any data. The
write operation returns immediately, i.e., does not wait
until the message is fully transmitted.

12 IOCTL_CAN_BLOCK_GET Get the blocking state of the device.

13 IOCTL_CAN_LISTEN
Set the device to listen. This allows the device to
receive messages, based on the receive buffer filters,
but not send any message. This is used for debugging.

14 IOCTL_CAN_ACTIVE Set the device to active. This is the normal read/write
operation of the device.

15 IOCTL_CAN_LISTEN_GET Get the listen state of the device.

16 IOCTL_CAN_ARBITER_ROUND_ROBIN

Set the transmit buffer arbitration mode to round robin.
This means that messages are placed in the next
available slot using a round robin scheme (0, 1, ... 7, 0,
1, ...).

17 IOCTL_CAN_ARBITER_FIXED_PRIORITY

Set the transmit buffer arbitration to fixed priority. This
means that a message placed in transmit buffer 0 gets
the highest priority. Transmit buffer 7 gets the lowest
priority.

18 IOCTL_CAN_ARBITER_GET Get the transmit buffer arbitration mode.

19 IOCTL_CAN_ERROR_STATS_GET Get the error statistics of the CAN device.

20 IOCTL_CAN_BUFFER_LINK_SET Set buffer linking for a particular receive buffer.

21 IOCTL_CAN_BUFFER_LINK_CLEAR Clear the buffer linking for a particular receive buffer.

22 IOCTL_CAN_BUFFER_LINK_GET Get the receive buffer linking status for a receive buffer.

23 IOCTL_CAN_RX_ENABLE_SET Enable a receive buffer.

24 IOCTL_CAN_RX_ENABLE_CLEAR Clear (disable) a receive buffer.

25 IOCTL_CAN_RX_ENABLE_GET Get the receive buffer enable status.

26 IOCTL_CAN_TX_ENABLE_SET Enable a transmit buffer.

27 IOCTL_CAN_TX_ENABLE_CLEAR Clear (disable) a transmit buffer.

28 IOCTL_CAN_TX_ENABLE_GET Get the transmit buffer enable status.

29 IOCTL_CAN_READ Read and copy CAN messages to user space.

30 IOCTL_CAN_WRITE Copy message from user space and transmit.

Table 1. CAN Driver IOCTLs (Sheet 2 of 2)

No Interface Description

Intel® Platform Controller Hub EG20T CAN Driver
February 2011 Programmer’s Guide
Order Number: 324255-002US 11

CAN Driver API Details—Intel® Platform Controller Hub EG20T

• ioh_can_ioctl – contains IOCTL definitions
• ioh_can_common.h – data structures and other variables used by the IOCTLs

Refer to Section 5.0 for the programming details.

4.4 Structures and Enumerations
This section provides the structures and enumerations used by interfaces exposed by
the CAN driver. All the structures and enumerations used by the interfaces are defined
in ioh_can_common.h.

4.4.1 Structures

4.4.1.1 ioh_can_msg_t

Structure for sending the message data.

4.4.1.2 ioh_can_timing_t

Structure for setting CAN timing values.

4.4.1.3 ioh_can_error_t

Structure for getting the CAN error status.

Table 2. ioh_can_msg_t structure

Name Description

unsigned short ide Standard/extended message

unsigned int id 11 or 29 bit msg id

unsigned short dlc Size of data

Unsigned char
data?[IOH_CAN_MSG_DATA_LEN] Message payload

unsigned short rtr RTR message

Table 3. ioh_can_timing_t structure

Name Description

unsigned int bitrate Bitrate (kbps)

unsigned int cfg_bitrate Bitrate value for Baud rate prescaler

unsigned int cfg_tseg1 Timing segment 1

unsigned int cfg_tseg2 Timing segment 2

unsigned int cfg_sjw Sync jump width

unsigned int smpl_mode Sampling mode

unsigned int edge_mode Edge R / D

Intel® Platform Controller Hub EG20T —CAN Driver API Details

Intel® Platform Controller Hub EG20T CAN Driver
Programmer’s Guide February 2011
12 Order Number: 324255-002US

4.4.1.4 ioh_can_acc_filter_t

Structure contains filter information.

4.4.1.5 ioh_can_rx_filter_t

Structure for setting the CAN message filters.

4.4.2 Enumerations

This section lists the enumerations exposed by the interface.

4.4.2.1 ioh_can_listen_mode_t

CAN listen mode.

4.4.2.2 ioh_can_run_mode_t

CAN run mode.

Table 4. ioh_can_error_t structure

Name Description

unsigned int rxgte96 Rx error count >=96

unsigned int txgte96 Tx error count >=96

unsigned int error_stat

Error state of CAN node:
00=error active (normal)
01=error passive
1x=bus off

unsigned int rx_err_cnt Rx counter

unsigned int tx_err_cnt Tx counter

Table 5. ioh_can_acc_filter_t structure

Name Description

unsigned int id Identifier value

unsigned int id_ext Standard/extended ID?

unsigned int rtr RTR message

Table 6. ioh_can_rx_filter_t structure

Name Description

unsigned int num Message Object Number

unsigned int umask Mask value

ioh_can_acc_filter_t amr Mask value for receive message object register

ioh_can_acc_filter_t aidr Message Identifier value for receive message object

Table 7. ioh_can_listen_mode_t enumeration

Name Description

IOH_CAN_ACTIVE R/w to/from the CAN

IOH_CAN_LISTEN Only read from the CAN

Intel® Platform Controller Hub EG20T CAN Driver
February 2011 Programmer’s Guide
Order Number: 324255-002US 13

CAN Driver API Details—Intel® Platform Controller Hub EG20T

4.4.2.3 ioh_can_arbiter_mode_t

Identifies valid values for the arbitration mode.

4.4.2.4 ioh_can_restart_mode_t

Identifies valid values for the auto-restart mode.

4.4.2.5 ioh_can_baud_t

Identifies common baudrates.

4.4.2.6 ioh_can_interrupt_t

Identifies interrupt enable/disable.

Table 8. ioh_can_run_mode_t enumeration

Name Description

IOH_CAN_STOP CAN stopped

IOH_CAN_RUN CAN running

Table 9. ioh_can_arbiter_mode_t enumeration

Name Description

IOH_CAN_ROUND_ROBIN Equal priority

IOH_CAN_FIXED_PRIORITY Buffer num priority

Table 10. ioh_can_restart_mode_t enumeration

Name Description

CAN_MANUAL Manual restart

CAN_AUTO Automatic restart

Table 11. ioh_can_baud_t enumeration

Name Description

IOH_CAN_BAUD_10 10 Kbps

IOH_CAN_BAUD_20 20 Kbps

IOH_CAN_BAUD_50 50 Kbps

IOH_CAN_BAUD_125 125 Kbps

IOH_CAN_BAUD_250 250 Kbps

IOH_CAN_BAUD_500 500 Kbps

IOH_CAN_BAUD_800 800 Kbps

IOH_CAN_BAUD_1000 1000 Kbps

Intel® Platform Controller Hub EG20T —CAN Driver API Details

Intel® Platform Controller Hub EG20T CAN Driver
Programmer’s Guide February 2011
14 Order Number: 324255-002US

4.5 Error Handling
Since the IOCTL command is implemented using the Windows* API, the return value of
the call is dependent on and defined by the OS. On Windows XP*, the return value is a
non-zero value. If the error is detected within or outside the driver, an appropriate
system defined value is returned by the driver.

4.6 Inter-IOCTL dependencies
There are no inter-IOCTL dependencies. Once the driver has been loaded successfully,
the IOCTLs above can be used in any order.

Table 12. ioh_can_interrupt_t enumeration

Name Description

CAN_ENABLE Enable bit only

CAN_DISABLE Disable bit only

CAN_ALL All interrupts

CAN_NONE No interrupt

Intel® Platform Controller Hub EG20T CAN Driver
February 2011 Programmer’s Guide
Order Number: 324255-002US 15

Programming Guide—Intel® Platform Controller Hub EG20T

5.0 Programming Guide
This section explains the basic procedure for using the CAN driver from a user mode
application. All operations are through the IOCTLs exposed by the CAN driver. Refer to
Section 4.2 for details on the IOCTLs. The steps involved in accessing the CAN driver
from the user mode application are described below:

• Opening the Device
• Configure the device for different modes of operations
• Closing the Device

5.1 Basic Flow
The basic flow to use this driver from a user mode application is to open the device,
configure the device, transmit/receive messages and then close the device. The
following describes the flow using pseudo-code.

main()

{

/* Open the CAN device driver */

hDevice = CreateFile(DriverName,

GENERIC_READ|GENERIC_WRITE,

0, NULL, OPEN_EXISTING, 0,NULL);

/* Confiure the CAN device driver */

DeviceIoControl(hDevice,IOCTL_CAN_SIMPLE,

&baud,sizeof(baud),NULL,0,&dwBytesReturned,NULL);

/* Receive/transmit messages. */

DeviceIoControl(hDevice, IOCTL_CAN_READ,

NULL,0,&msg,sizeof(msg),&dwBytesReturned,NULL);

DeviceIoControl(hDevice,IOCTL_CAN_WRITE,

&msg,sizeof(msg),NULL,0,&dwBytesReturned,NULL);

/* Close the CAN device driver */

CloseHandle(hDevice);

}

5.2 Opening the Device
CAN Device is opened using CreateFile Win32 API. To get the device name , refer to
Section 5.2.1.

Intel® Platform Controller Hub EG20T —Programming Guide

Intel® Platform Controller Hub EG20T CAN Driver
Programmer’s Guide February 2011
16 Order Number: 324255-002US

5.2.1 Using GUID Interface Exposed by the Driver

A device interface class is a way of exporting device and driver functionality to other
system components, including other drivers, as well as user-mode applications. A
driver can register a device interface class, and then enable an instance of the class for
each device object to which user-mode I/O requests might be sent. The Intel® PCH
EG20T CAN driver registers the following interface.

This is defined in ioh_can_common.h.

Device interfaces are available to both kernel-mode components and user-mode
applications. User-mode code can use SetupDiXxx functions to find out the registered,
enabled device interfaces.

Please refer the following site to get the details about SetupDiXxx functions.

http://msdn.microsoft.com/en-us/library/ff549791.aspx

5.3 Device Functionality
This section describes how to configure the device to achieve time synchronization on
Ethernet and CAN.

5.3.1 CAN Device Configuration Options

This section describes the IOCTLs that are used to configure the CAN device and to get
different device operation mode statuses.

• IOCTL_CAN_RESET
This ioctl is called to reset the device to a known state.

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_RESET,

NULL,

0,

NULL,

0,

&dwRet,

NULL);

• IOCTL_CAN_RUN
This ioctl is called to set the device to run mode.

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_RUN,

NULL,

0,

No Interface Name

1 GUID_DEVINTERFACE_IOHCAN

Intel® Platform Controller Hub EG20T CAN Driver
February 2011 Programmer’s Guide
Order Number: 324255-002US 17

Programming Guide—Intel® Platform Controller Hub EG20T

NULL,

0,

&dwRet,

NULL);

• IOCTL_CAN_RUN_GET
This ioctl is called to get the current run mode of the device.

ULONGrunmode;

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_RUN_GET,

NULL,

0,

&runmode,

Sizeof(runmode),

&dwRet,

NULL);

• IOCTL_CAN_BLOCK
This ioctl is called to put the device to Block mode.

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_BLOCK,

NULL,

0,

NULL,

0,

&dwRet,

NULL);

• IOCTL_CAN_NON_BLOCK
This ioctl is called to put the device to non-block mode.

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_NON_BLOCK,

NULL,

0,

NULL,

0,

&dwRet,

NULL);

Intel® Platform Controller Hub EG20T —Programming Guide

Intel® Platform Controller Hub EG20T CAN Driver
Programmer’s Guide February 2011
18 Order Number: 324255-002US

• IOCTL_CAN_BLOCK_GET
This ioctl is called to get the current block mode of the device.

ULONG ulBlockGet;

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_BLOCK_GET,

NULL,

0,

&ulBlockGet,

Sizeof(ulBlockGet),

&dwRet,

NULL);

• IOCTL_CAN_STOP
This ioctl is called to put the device to stop mode.

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_STOP,

NULL,

0,

NULL,

0,

&dwRet,

NULL);

• IOCTL_CAN_ACTIVE
This ioctl is called to put the device to active mode.

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_ACTIVE,

NULL,

0,

NULL,

0,

&dwRet,

NULL);

• IOCTL_CAN_LISTEN
This ioctl is called to put the device to listen mode.

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_LISTEN,

Intel® Platform Controller Hub EG20T CAN Driver
February 2011 Programmer’s Guide
Order Number: 324255-002US 19

Programming Guide—Intel® Platform Controller Hub EG20T

NULL,

0,

NULL,

0,

&dwRet,

NULL);

• IOCTL_CAN_LISTEN_GET
This ioctl is called to get the current listen mode of the device.

ULONG ulListenGet;

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_LISTEN_GET,

NULL,

0,

&ulListenGet,

Sizeof(ULONG),

&dwRet,

NULL);

• IOCTL_CAN_ARBITER_ROUND_ROBIN
This ioctl is called to put the device priority to round robin.

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_ARBITER_ROUND_ROBIN,

NULL,

0,

NULL,

0,

&dwRet,

NULL);

• IOCTL_CAN_ARBITER_FIXED_PRIORITY
This ioctl is called to put the device priority to fixed priority.

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_ARBITER_FIXED_PRIORITY,

NULL,

0,

NULL,

0,

Intel® Platform Controller Hub EG20T —Programming Guide

Intel® Platform Controller Hub EG20T CAN Driver
Programmer’s Guide February 2011
20 Order Number: 324255-002US

&dwRet,

NULL);

• IOCTL_CAN_ARBITER_GET
This ioctl is called to get the current priority of the device.

ULONG ulArbiterGet;

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_ARBITER_GET,

NULL,

0,

&ulArbiterGet,

Sizeof(ULONG),

&dwRet,

NULL);

5.3.2 CAN Filter Configuration

• IOCTL_CAN_FILTER
This ioctl is called to set the receive filter for a receive buffer.

accFilter.id =0x01;

accFilter.id_ext = 0x00;

accFilter.rtr=0;

filter.num = 1;

filter.umask = 0xffff;

filter.amr = accFilter;

filter.aidr = accFilter;

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_FILTER,

&filter,

sizeof(ioh_can_rx_filter_t),

NULL,

0,

&dwRet,

NULL);

• IOCTL_CAN_FILTER_GET
This ioctl is called to get the current filter.

Intel® Platform Controller Hub EG20T CAN Driver
February 2011 Programmer’s Guide
Order Number: 324255-002US 21

Programming Guide—Intel® Platform Controller Hub EG20T

accFilter.id =0x01;

accFilter.id_ext = 0x00;

accFilter.rtr=0;

filter.num = 1;

filter.umask = 0xffff;

filter.amr = accFilter;

filter.aidr = accFilter;

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_FILTER_GET,

NULL,

0,

&filter,

sizeof(ioh_can_rx_filter_t),

&dwRet,

NULL);

5.3.3 CAN Clock Configuration

• IOCTL_CAN_CUSTOM
This ioctl is called to set the custom clock rate.

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_CUSTOM,

&NULL,

0,

NULL,

0,

&dwRet,

NULL);

• IOCTL_CAN_SIMPLE
This ioctl is called to set a different baud rate for the device.

ioh_can_baud_t baudrate = IOH_CAN_BAUD_20;

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_SIMPLE,

&baudrate,

Intel® Platform Controller Hub EG20T —Programming Guide

Intel® Platform Controller Hub EG20T CAN Driver
Programmer’s Guide February 2011
22 Order Number: 324255-002US

Sizeof(baudrate),

NULL,

0,

&dwRet,

NULL);

• IOCTL_CAN_TIMING_GET
This ioctl is called to get the current clock setting of the device.

ioh_can_timing_t timing;

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_TIMING_GET,

NULL,

0,

&timing,

Sizeof(ioh_can_timing_t)

&dwRet,

NULL);

5.3.4 Getting CAN Error Status

• IOCTL_CAN_ERROR_STATS_GET
This ioctl is called to get the error status of the device.

ioh_can_error_t errorStat;

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_ERROR_STATS_GET,

&NULL,

0,

&errorStat,

Sizeof(ioh_can_error_t),

&dwRet,

NULL);

5.3.5 Reading and Writing CAN Message

Following IOCTLs are used for getting receive and transmit CAN messages.
• IOCTL_CAN_WRITE

This ioctl is called to write the message.

ioh_can_msg_t msg;

msg.ide=0;

Intel® Platform Controller Hub EG20T CAN Driver
February 2011 Programmer’s Guide
Order Number: 324255-002US 23

Programming Guide—Intel® Platform Controller Hub EG20T

msg.id=(0x7ff);

msg.dlc=1;

msg.data[0]=10;

msg.rtr=0;

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_WRITE,

&msg,

sizeof(msg),

NULL,

0,

&dwRet,

NULL);

• IOCTL_CAN_READ
This ioctl is called to read the message.

ioh_can_msg_t msg;

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_READ,

NULL,

0,

&msg,

sizeof(msg),

&dwRet,

NULL)

5.3.6 Configuring CAN Receive/Transmit Message Object

• IOCTL_CAN_RX_ENABLE_SET
This ioctl is called to enable the receive buffer.

unsigned int uiReceiveBuffNo=1;

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_RX_ENABLE_SET,

&uiReceiveBuffNo,

sizeof(uiReceiveBuffNo),

NULL,

0,

Intel® Platform Controller Hub EG20T —Programming Guide

Intel® Platform Controller Hub EG20T CAN Driver
Programmer’s Guide February 2011
24 Order Number: 324255-002US

&dwRet,

NULL);

• IOCTL_CAN_RX_ENABLE_CLEAR
This ioctl is called to clear the receive buffer.

unsigned int uiReceiveBuffNo=1;

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_RX_ENABLE_CLEAR,

&uiReceiveBuffNo,

sizeof(uiReceiveBuffNo),

NULL,

0,

&dwRet,

NULL);

• IOCTL_CAN_RX_ENABLE_GET
This ioctl is called to get the receive buffer status.

unsigned int uiReceiveBuffNo=1;

unsinged int uiStatus;

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_RX_ENABLE_GET,

&uiReceiveBuffNo,

sizeof(uiReceiveBuffNo),

&uiStatus,

Sizeof(uiStatus),

&dwRet,

NULL);

• IOCTL_CAN_TX_ENABLE_SET
This ioctl is called to enable the transmit buffer.

unsigned int uiTransmitBuffNo=1;

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_TX_ENABLE_SET,

&uiTransmitBuffNo,

sizeof(uiTransmitBuffNo),

NULL,

0,

&dwRet,

Intel® Platform Controller Hub EG20T CAN Driver
February 2011 Programmer’s Guide
Order Number: 324255-002US 25

Programming Guide—Intel® Platform Controller Hub EG20T

NULL);

• IOCTL_CAN_TX_ENABLE_CLEAR
This ioctl is called to clear the transmit buffer.

unsigned int uiTransmitBuffNo =1;

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_TX_ENABLE_CLEAR,

&uiTransmitBuffNo,

sizeof(uiTransmitBuffNo),

NULL,

0,

&dwRet,

NULL);

• IOCTL_CAN_TX_ENABLE_GET
This ioctl is called to get the transmit buffer status.

unsigned int uiTransmitBuffNo =1;

unsinged int uiStatus;

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_RX_ENABLE_GET,

&uiTransmitBuffNo,

sizeof(uiTransmitBuffNo),

&uiStatus,

Sizeof(uiStatus),

&dwRet,

NULL);

• IOCTL_CAN_BUFFER_LINK_SET
This ioctl is called to set the buffer link.

unsigned int uiReceiveBuffNo=1;

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_BUFFER_LINK_SET,

&uiReceiveBuffNo,

sizeof(uiReceiveBuffNo),

NULL,

0,

&dwRet,

NULL);

Intel® Platform Controller Hub EG20T —Programming Guide

Intel® Platform Controller Hub EG20T CAN Driver
Programmer’s Guide February 2011
26 Order Number: 324255-002US

• IOCTL_CAN_BUFFER_LINK_CLEAR
This ioctl is called to clear the buffer link.

unsigned int uiReceiveBuffNo=1;

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_BUFFER_LINK_CLEAR,

&uiReceiveBuffNo,

sizeof(uiReceiveBuffNo),

NULL,

0,

&dwRet,

NULL);

• IOCTL_CAN_BUFFER_LINK_GET
This ioctl is called to get the buffer link status.

unsigned int uiReceiveBuffNo=1;

unsinged int uiStatus;

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_BUFFER_LINK_GET,

&uiReceiveBuffNo,

sizeof(uiReceiveBuffNo),

&uiStatus,

Sizeof(uiStatus),

&dwRet,

NULL);

5.3.7 CAN Device Reset

The following IOCTL is used for resetting the device.
• IOCTL_CAN_RESET

bRet = DeviceIoControl(hDevice,

IOCTL_CAN_RESET,NULL,0,NULL,0,&dwRet,NULL);

5.4 Closing the Device
Once all the operations related to the CAN driver are finished, the device handle must
free the application by calling the Win32 API CloseHandle.

CloseHandle(hHandle);

	Intel® Platform Controller Hub EG20T
	Revision History
	Legal Lines and Disclaimers

	1.0 Introduction
	2.0 Operating System (OS) Support
	3.0 Dependencies
	4.0 CAN Driver API Details
	4.1 Features
	4.2 Interface Details
	Table 1. CAN Driver IOCTLs (Sheet 1 of 2)

	4.3 IOCTL Usage Details
	4.4 Structures and Enumerations
	4.4.1 Structures
	4.4.1.1 ioh_can_msg_t
	Table 2. ioh_can_msg_t structure

	4.4.1.2 ioh_can_timing_t
	Table 3. ioh_can_timing_t structure

	4.4.1.3 ioh_can_error_t
	Table 4. ioh_can_error_t structure

	4.4.1.4 ioh_can_acc_filter_t
	Table 5. ioh_can_acc_filter_t structure

	4.4.1.5 ioh_can_rx_filter_t
	Table 6. ioh_can_rx_filter_t structure

	4.4.2 Enumerations
	4.4.2.1 ioh_can_listen_mode_t
	Table 7. ioh_can_listen_mode_t enumeration

	4.4.2.2 ioh_can_run_mode_t
	Table 8. ioh_can_run_mode_t enumeration

	4.4.2.3 ioh_can_arbiter_mode_t
	Table 9. ioh_can_arbiter_mode_t enumeration

	4.4.2.4 ioh_can_restart_mode_t
	Table 10. ioh_can_restart_mode_t enumeration

	4.4.2.5 ioh_can_baud_t
	Table 11. ioh_can_baud_t enumeration

	4.4.2.6 ioh_can_interrupt_t
	Table 12. ioh_can_interrupt_t enumeration

	4.5 Error Handling
	4.6 Inter-IOCTL dependencies

	5.0 Programming Guide
	5.1 Basic Flow
	5.2 Opening the Device
	5.2.1 Using GUID Interface Exposed by the Driver

	5.3 Device Functionality
	5.3.1 CAN Device Configuration Options
	5.3.2 CAN Filter Configuration
	5.3.3 CAN Clock Configuration
	5.3.4 Getting CAN Error Status
	5.3.5 Reading and Writing CAN Message
	5.3.6 Configuring CAN Receive/Transmit Message Object
	5.3.7 CAN Device Reset

	5.4 Closing the Device

