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1.0 Introduction
This document provides the programming details of the Serial Peripheral Interface 
(SPI) driver for Windows*. This includes information about the interfaces exposed by 
the driver and how to use those interfaces to drive the SPI hardware.

The SPI bus is a communication bus that operates in full duplex mode. Devices 
communicate in master/slave mode, in which the master device initiates the data 
transfer. The SPI hardware supports four different modes for communication.
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2.0 Operating System (OS) Support
The SPI driver is supported by the following operating systems:

No OS Notes

1 Microsoft Windows XP* Service Pack 3

2 Windows Embedded Standard* 2009

3 Windows Embedded POSReady* 2009

4 Microsoft Windows 7*

5 Windows Embedded Standard7
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3.0 Dependencies
This driver is only dependent upon appropriate OS driver installation. Also, this driver is 
not dependent upon any other software delivered.
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4.0 SPI Driver API Details
This section provides information about the interfaces exposed by the SPI driver. The 
current implementation of the driver exposes the interfaces through Input/Output 
Controls (IOCTLs), which can be called from the application (user mode) using the 
Win32 API DeviceIoControl (refer to the MSDN documentation for more details on this 
API). The following sections provide information about the IOCTLs and how to use them 
to configure the SPI hardware to work properly.

4.1 Features
The SPI Driver allows setting different configurations for SPI hardware. It supports:

• Master mode only
• Either 8-bit (byte) or 16-bit (word) transfer size
• Setting serial clock rate for transfer up to 5 Mbps
• Bus master byte/multi-byte read transactions
• Bus master byte/multi-byte write transactions
• Different modes – Mode 0, Mode 1, Mode 2 and Mode 3
• Either LSB first or MSB first data transfer

4.2 Interface Details
Table 1 lists the IOCTLs supported by the driver.

4.3 IOCTL Usage Details
This section assumes a single-client model, in which there is a single application-level 
program configuring the SPI interface and initiating I/O operations. The following files 
contain the details of the IOCTLs and data structures used:

• ioh_spi_ioctls.h – contains IOCTL definitions
• ioh_spi_common.h – data structures and other variables used by the IOCTLs

4.3.1 IOCTL_SPI_CONFIG

Before doing any operation, the interface must be initialized and configured. This IOCTL 
is used to initialize and configure the SPI interface. The prerequisite for this is that the 
device must be installed and opened using the Win32 API CreateFile. 

Table 1. Supported IOCTLs

No IOCTL Remarks

1 IOCTL_SPI_CONFIG
This IOCTL is used for configuration information such as mode, 
LSB first or MSB first, bits per word, baud rate, etc. for the 
hardware.

2 IOCTL_SPI_ENABLE_INT This IOCTL is used to enable the interrupts.

3 IOCTL_SPI_DISABLE_INT This IOCTL is used to disable the interrupts.

4 IOCTL_SPI_READ This IOCTL is used to read information from the devices 
connected to the SPI hardware.

5 IOCTL_SPI_WRITE This IOCTL is used to write information to the devices connected 
to the SPI hardware.

6 IOCTL_SPI_GET_CONFIG This IOCTL is used to get current configuration details.
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IOH_SPI_CONFIG spiConfig = {0};

spiConfig.SlaveNo = 1;

spiConfig.BaudRate = 10000;

spiConfig.BitsPerWord = IOH_SPI_8_BPW;

spiConfig.Mode = IOH_SPI_MODE_0;

DeviceIoControl(hHandle,IOCTL_SPI_CONFIG,&spiConfig,sizeof(spiConfig),

NULL,0,&dwSize,NULL)

4.3.2 IOCTL_SPI_ENABLE_INT 

This enables the interrupts of SPI interface.

DeviceIoControl(hHandle,IOCTL_SPI_ENABLE_INT,NULL,0,NULL,0,&dwSize,NULL);

4.3.3 IOCTL_SPI_DISABLE_INT 

This disables the interrupts of SPI interface.

DeviceIoControl(hHandle,IOCTL_SPI_DISABLE_INT,NULL,0,NULL,0,&dwSize,NULL);

4.3.4 IOCTL_SPI_READ

The read operation requires two buffers to send to the driver. For every read operation 
there must be a dummy write operation. For example, if you are planning to read 16 
bytes of data from a device connected to the SPI interface, you first must write 16 
bytes of dummy data to the device.

IOH_SPI_RW ioData = {0};

ioData.SpiConfig = spiConfig;

ioData.buffer = dummy_write_buff;//array

ioData.nSize = 64;

DeviceIoControl(hHandle,IOCTL_SPI_READ,&ioData,sizeof(ioData),ReadBuff,

sizeof(ReadBuff),&dwSize,NULL);

4.3.5 IOCTL_SPI_WRITE 

This IOCTL is used to perform the write operation.

IOH_SPI_RW ioData = {0};

ioData.SpiConfig = spiConfig;

ioData.buffer = write_buff;//array

ioData.nSize = 64;

DeviceIoControl(hHandle,IOCTL_SPI_WRITE,&ioData,sizeof(ioData),NULL,

NULL,&dwSize,NULL);
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4.3.6 IOCTL_SPI_GET_CONFIG

This IOCTL is used to get the configuration of the SPI interface.

IOH_SPI_CONFIG spiConfig = {0};

DeviceIoControl(hHandle,IOCTL_SPI_GET_CONFIG,NULL,0,

&spiConfig,sizeof(spiConfig),&dwSize,NULL);

4.4 Structures and Macros
This section provides the details on the structures and macros used by interfaces 
exposed by the SPI driver. All the structures and macros used by the interfaces are 
defined in ioh_spi_common.h.

4.4.1 Structures

4.4.1.1 IOH_SPI_CONFIG

This structure holds the user supplied configuration information for configuring the SPI 
controller.

4.4.1.2 IOH_SPI_RW

This structure is used for the read and write operation. It holds the configuration 
details, data size and data.

4.4.2 Macros

Table 2. IOH_SPI_CONFIG Structure

Name Description

ULONG SlaveNo Slave device number

ULONG BaudRate Baud rate of the device

UCHAR BitsPerWord Transfer size 8 bit or 16 bit

UCHAR Mode Mode0,1,2,3 and MSB/LSB first

Table 3. IOH_SPI_RW Structure

Name Description

IOH_SPI_CONFIG SpiConfig Configuration information. Refer to “IOH_SPI_CONFIG” on page 10.

ULONG nSize Data size.

PVOID Buffer Data buffer.

Table 4. Enumerations (Sheet 1 of 2)

Name Description

IOH_SPI_CPHA SPI Clock Phase. This is used to specify SPI MODE information.

IOH_SPI_CPOL SPI Clock Polarity. This is used to specify SPI MODE information.

IOH_SPI_MODE_0 This specifies MODE as 0. CPHA = 0 and CPOL =0.

IOH_SPI_MODE_1 This specifies the SPI mode as 1. 
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4.5 Error Handling
Since the IOCTL command is implemented using the Windows* API, the return value of 
the call is dependent on and defined by the OS. On Windows*, the return value is a 
non-zero value. If the error is detected within or outside the driver, an appropriate 
system defined value is returned by the driver.

4.6 Inter-IOCTL Dependencies
There are no inter-IOCTL dependencies. Once the driver has been loaded successfully, 
the IOCTLs stated above can be used in any order.

IOH_SPI_MODE_2 This specifies the SPI mode as 2.

IOH_SPI_MODE_3 This specifies the SPI mode as 3.

IOH_SPI_LSB_FIRST This configures the SPI hardware to perform transfer in LSB First data 
transfer.

IOH_SPI_8_BPW This configures the SPI hardware to perform 8-bits per word data transfer.

IOH_SPI_16_BPW This configures the SPI hardware to perform 16-bits per word data 
transfer.

IOH_SPI_ENABLE This is used by the IOCTL_SPI_ENABLE_INT ioctl to enable interrupts in 
the SPI hardware.

IOH_SPI_DISABLE This is used by the IOCTL_SPI_DISABLE_INT ioctl to disable interrupts in 
the SPI hardware.

Table 4. Enumerations (Sheet 2 of 2)

Name Description
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5.0 Programming Guide
This section describes the basic procedure for using the SPI driver from a user mode 
application. All operations are through the IOCTLs exposed by the SPI driver. Refer to 
Section 4.3 for details on the IOCTLs. The steps involved in accessing the GPIO driver 
from the user mode application are described below:

• Open the device.
• Initialize and configure the driver with desired settings through the interfaces 

exposed.
• Perform read/write operations.
• Close the device.

5.1 Opening the Device
SPI driver is opened using the Win32 CreateFile API. To get the device name, refer to 
Section 5.1.1.

5.1.1 Using GUID Interface Exposed by the Driver

A device interface class is a way of exporting device and driver functionality to other 
system components, including other drivers, as well as user-mode applications. A 
driver can register a device interface class, and then enable an instance of the class for 
each device object to which user-mode I/O requests might be sent. The topcliff IOH SPI 
driver registers the following interface.

This is defined ioh_spi_common.h.  

Device interfaces are available to both kernel-mode components and user-mode 
applications. User-mode code can use SetupDiXxx functions to find out about 
registered, enabled device interfaces.

Please refer the following site to get the details about SetupDiXxx functions.

http://msdn.microsoft.com/en-us/library/dd406734.aspx

5.2 Driver Configuration
The following IOCTLS are used to initialize and configure the settings for the SPI driver:

• IOCTL_SPI_CONFIG
• IOCTL_SPI_ENABLE_INT
• IOCTL_SPI_DISABLE_INT
• IOCTL_GET_SPI_CONFIG

DeviceIoControl Win32 API is used for sending information to the SPI driver.

IOH_SPI_CONFIG spiConfig = {0};

spiConfig.SlaveNo = 1;

spiConfig.BaudRate = 10000;

No Interface Name

1 GUID_DEVINTERFACE_IOHSPI
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spiConfig.BitsPerWord = IOH_SPI_8_BPW;

spiConfig.Mode = IOH_SPI_MODE_0;

DeviceIoControl(hHandle,IOCTL_SPI_CONFIG,&spiConfig,sizeof(spiConfig),

NULL,0,&dwSize,NULL);

...

DeviceIoControl(hHandle,IOCTL_SPI_GET_CONFIG,NULL,0,

&spiConfig,sizeof(spiConfig),&dwSize,NULL);

• IOCTL_SPI_ENABLE_INT

This IOCTL enables all the interrupts.

bRet = DeviceIoControl( hDevice,

IOCTL_SPI_ENABLE_INT,

NULL,

0,

NULL,

0,

&dwRet,

NULL);

• IOCTL_SPI_DISABLE_INT

This IOCTL disables all the interrupts.

bRet = DeviceIoControl( hDevice,

IOCTL_SPI_DISABLE_INT,

NULL,

0,

NULL,

0,

&dwRet,

NULL);

5.3 Read/Write Operation
IOCTL_SPI_READ and IOCTL_SPI_WRITE are used for read and write operations 
respectively. 

To perform Read/Write Operation, the device needs to be enabled.

IOH_SPI_CONFIG spiConfig = {0};

spiConfig.SlaveNo = 1;

spiConfig.BaudRate = 10000;
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spiConfig.BitsPerWord = IOH_SPI_8_BPW;

spiConfig.Mode = IOH_SPI_MODE_0;

DeviceIoControl(hHandle,IOCTL_SPI_CONFIG,&spiConfig,sizeof(spiConfig),

NULL,0,&dwSize,NULL);

DeviceIoControl(hHandle,IOCTL_SPI_ENABLE_INT,NULL,0,NULL,0,&dwSize,NULL);

IOH_SPI_RW ioData = {0};

ioData.SpiConfig = spiConfig;

ioData.buffer = write_buff;//array

ioData.nSize = 64;

DeviceIoControl(hHandle,IOCTL_SPI_WRITE,&ioData,sizeof(ioData),NULL,

NULL,&dwSize,NULL);

ioData.SpiConfig = spiConfig;

ioData.buffer = dummy_write_buff;//array

ioData.nSize = 64;

DeviceIoControl(hHandle,IOCTL_SPI_READ,&ioData,sizeof(ioData),ReadBuff,

sizeof(ReadBuff),&dwSize,NULL);

DeviceIoControl(hHandle,IOCTL_SPI_DISABLE_INT,NULL,0,NULL,0,&dwSize,NULL);

5.4 Close the Device
Once all the operations related to the SPI driver are completed, the device handle must 
be freed by the application by calling the Win32 API CloseHandle.

CloseHandle(hHandle);
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