
Order Number: 324260-002US

Intel® Platform Controller Hub
EG20T
Serial Peripheral Interface (SPI) Driver for Windows* Programmer’s
Guide

February 2011

Intel® Platform Controller Hub EG20T SPI Driver
Programmer’s Guide February 2011
2 Order Number: 324260-002US

Legal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE
FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics
of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with
this information.
The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or go to: http://www.intel.com/#/en_US_01.
Any software source code reprinted in this document is furnished under a software license and may only be used or copied in accordance with the terms
of that license.
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different
processor families. Go to: http://www.intel.com/products/processor%5Fnumber/ for details.
α Intel® Hyper-Threading Technology requires a computer system with a processor supporting Intel® HT Technology and an Intel® HT Technology-
enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use. For more information
including details on which processors support Intel® HT Technology, see http://www.intel.com/products/ht/hyperthreading_more.htm.
β Intel® High Definition Audio requires a system with an appropriate Intel® chipset and a motherboard with an appropriate CODEC and the necessary
drivers installed. System sound quality will vary depending on actual implementation, controller, CODEC, drivers and speakers. For more information
about Intel® HD audio, refer to http://www.intel.com/.
χ 64-bit computing on Intel® architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications
enabled for Intel® 64 architecture. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for
more information.
δ Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM) and, for some
uses, certain computer system software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software
configurations and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your
application vendor.
ε The original equipment manufacturer must provide Intel® Trusted Platform Module (Intel® TPM) functionality, which requires an Intel® TPM-supported
BIOS. Intel® TPM functionality must be initialized and may not be available in all countries.
θ For Enhanced Intel SpeedStep® Technology, see the Processor Spec Finder or contact your Intel representative for more information.
I2C* is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C* bus/protocol and was developed by Intel.
Implementations of the I2C* bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips
Corporation.
BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Core Inside, i960, Intel, the Intel logo, Intel AppUp, Intel Atom, Intel Atom Inside, Intel
Core, Intel Inside, the Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel Sponsors of
Tomorrow., the Intel Sponsors of Tomorrow. logo, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, InTru, the InTru logo, InTru soundmark, Itanium,
Itanium Inside, MCS, MMX, Moblin, Pentium, Pentium Inside, skoool, the skoool logo, Sound Mark, The Journey Inside, vPro Inside, VTune, Xeon, and
Xeon Inside are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2011, Intel Corporation and/or its suppliers and licensors. All rights reserved.

http://www.intel.com/#/en_US_01
http://www.intel.com/products/processor%5Fnumber/
http://www.intel.com/products/ht/hyperthreading_more.htm
http://www.intel.com/
http://processorfinder.intel.com/

Intel® Platform Controller Hub EG20T SPI Driver
February 2011 Programmer’s Guide
Order Number: 324260-002US 3

Contents—Intel® Platform Controller Hub EG20T

Contents

1.0 Introduction ..5

2.0 Operating System (OS) Support ..6

3.0 Dependencies ..7

4.0 SPI Driver API Details ...8
4.1 Features ..8
4.2 Interface Details ...8
4.3 IOCTL Usage Details ..8

4.3.1 IOCTL_SPI_CONFIG..8
4.3.2 IOCTL_SPI_ENABLE_INT ...9
4.3.3 IOCTL_SPI_DISABLE_INT..9
4.3.4 IOCTL_SPI_READ ...9
4.3.5 IOCTL_SPI_WRITE ...9
4.3.6 IOCTL_SPI_GET_CONFIG .. 10

4.4 Structures and Macros ... 10
4.4.1 Structures ... 10

4.4.1.1 IOH_SPI_CONFIG ... 10
4.4.1.2 IOH_SPI_RW.. 10

4.4.2 Macros.. 10
4.5 Error Handling .. 11
4.6 Inter-IOCTL Dependencies.. 11

5.0 Programming Guide... 12
5.1 Opening the Device ... 12

5.1.1 Using GUID Interface Exposed by the Driver .. 12
5.2 Driver Configuration .. 12
5.3 Read/Write Operation .. 13
5.4 Close the Device ... 14

Tables
1 Supported IOCTLs..8
2 IOH_SPI_CONFIG Structure... 10
3 IOH_SPI_RW Structure ... 10
4 Enumerations .. 10

Intel® Platform Controller Hub EG20T—Revision History

Intel® Platform Controller Hub EG20T SPI Driver
Programmer’s Guide February 2011
4 Order Number: 324260-002US

Revision History

Date Revision Description

February 2011 002
Updated Section 2.0, “Operating System (OS) Support” on page 6
Added Section 5.1.1, “Using GUID Interface Exposed by the Driver” on page 12

September 2010 001 Initial release

Intel® Platform Controller Hub EG20T SPI Driver
February 2011 Programmer’s Guide
Order Number: 324260-002US 5

Introduction—Intel® Platform Controller Hub EG20T

1.0 Introduction
This document provides the programming details of the Serial Peripheral Interface
(SPI) driver for Windows*. This includes information about the interfaces exposed by
the driver and how to use those interfaces to drive the SPI hardware.

The SPI bus is a communication bus that operates in full duplex mode. Devices
communicate in master/slave mode, in which the master device initiates the data
transfer. The SPI hardware supports four different modes for communication.

Intel® Platform Controller Hub EG20T—Operating System (OS) Support

Intel® Platform Controller Hub EG20T SPI Driver
Programmer’s Guide February 2011
6 Order Number: 324260-002US

2.0 Operating System (OS) Support
The SPI driver is supported by the following operating systems:

No OS Notes

1 Microsoft Windows XP* Service Pack 3

2 Windows Embedded Standard* 2009

3 Windows Embedded POSReady* 2009

4 Microsoft Windows 7*

5 Windows Embedded Standard7

Intel® Platform Controller Hub EG20T SPI Driver
February 2011 Programmer’s Guide
Order Number: 324260-002US 7

Dependencies—Intel® Platform Controller Hub EG20T

3.0 Dependencies
This driver is only dependent upon appropriate OS driver installation. Also, this driver is
not dependent upon any other software delivered.

Intel® Platform Controller Hub EG20T—SPI Driver API Details

Intel® Platform Controller Hub EG20T SPI Driver
Programmer’s Guide February 2011
8 Order Number: 324260-002US

4.0 SPI Driver API Details
This section provides information about the interfaces exposed by the SPI driver. The
current implementation of the driver exposes the interfaces through Input/Output
Controls (IOCTLs), which can be called from the application (user mode) using the
Win32 API DeviceIoControl (refer to the MSDN documentation for more details on this
API). The following sections provide information about the IOCTLs and how to use them
to configure the SPI hardware to work properly.

4.1 Features
The SPI Driver allows setting different configurations for SPI hardware. It supports:

• Master mode only
• Either 8-bit (byte) or 16-bit (word) transfer size
• Setting serial clock rate for transfer up to 5 Mbps
• Bus master byte/multi-byte read transactions
• Bus master byte/multi-byte write transactions
• Different modes – Mode 0, Mode 1, Mode 2 and Mode 3
• Either LSB first or MSB first data transfer

4.2 Interface Details
Table 1 lists the IOCTLs supported by the driver.

4.3 IOCTL Usage Details
This section assumes a single-client model, in which there is a single application-level
program configuring the SPI interface and initiating I/O operations. The following files
contain the details of the IOCTLs and data structures used:

• ioh_spi_ioctls.h – contains IOCTL definitions
• ioh_spi_common.h – data structures and other variables used by the IOCTLs

4.3.1 IOCTL_SPI_CONFIG

Before doing any operation, the interface must be initialized and configured. This IOCTL
is used to initialize and configure the SPI interface. The prerequisite for this is that the
device must be installed and opened using the Win32 API CreateFile.

Table 1. Supported IOCTLs

No IOCTL Remarks

1 IOCTL_SPI_CONFIG
This IOCTL is used for configuration information such as mode,
LSB first or MSB first, bits per word, baud rate, etc. for the
hardware.

2 IOCTL_SPI_ENABLE_INT This IOCTL is used to enable the interrupts.

3 IOCTL_SPI_DISABLE_INT This IOCTL is used to disable the interrupts.

4 IOCTL_SPI_READ This IOCTL is used to read information from the devices
connected to the SPI hardware.

5 IOCTL_SPI_WRITE This IOCTL is used to write information to the devices connected
to the SPI hardware.

6 IOCTL_SPI_GET_CONFIG This IOCTL is used to get current configuration details.

Intel® Platform Controller Hub EG20T SPI Driver
February 2011 Programmer’s Guide
Order Number: 324260-002US 9

SPI Driver API Details—Intel® Platform Controller Hub EG20T

IOH_SPI_CONFIG spiConfig = {0};

spiConfig.SlaveNo = 1;

spiConfig.BaudRate = 10000;

spiConfig.BitsPerWord = IOH_SPI_8_BPW;

spiConfig.Mode = IOH_SPI_MODE_0;

DeviceIoControl(hHandle,IOCTL_SPI_CONFIG,&spiConfig,sizeof(spiConfig),

NULL,0,&dwSize,NULL)

4.3.2 IOCTL_SPI_ENABLE_INT

This enables the interrupts of SPI interface.

DeviceIoControl(hHandle,IOCTL_SPI_ENABLE_INT,NULL,0,NULL,0,&dwSize,NULL);

4.3.3 IOCTL_SPI_DISABLE_INT

This disables the interrupts of SPI interface.

DeviceIoControl(hHandle,IOCTL_SPI_DISABLE_INT,NULL,0,NULL,0,&dwSize,NULL);

4.3.4 IOCTL_SPI_READ

The read operation requires two buffers to send to the driver. For every read operation
there must be a dummy write operation. For example, if you are planning to read 16
bytes of data from a device connected to the SPI interface, you first must write 16
bytes of dummy data to the device.

IOH_SPI_RW ioData = {0};

ioData.SpiConfig = spiConfig;

ioData.buffer = dummy_write_buff;//array

ioData.nSize = 64;

DeviceIoControl(hHandle,IOCTL_SPI_READ,&ioData,sizeof(ioData),ReadBuff,

sizeof(ReadBuff),&dwSize,NULL);

4.3.5 IOCTL_SPI_WRITE

This IOCTL is used to perform the write operation.

IOH_SPI_RW ioData = {0};

ioData.SpiConfig = spiConfig;

ioData.buffer = write_buff;//array

ioData.nSize = 64;

DeviceIoControl(hHandle,IOCTL_SPI_WRITE,&ioData,sizeof(ioData),NULL,

NULL,&dwSize,NULL);

Intel® Platform Controller Hub EG20T—SPI Driver API Details

Intel® Platform Controller Hub EG20T SPI Driver
Programmer’s Guide February 2011
10 Order Number: 324260-002US

4.3.6 IOCTL_SPI_GET_CONFIG

This IOCTL is used to get the configuration of the SPI interface.

IOH_SPI_CONFIG spiConfig = {0};

DeviceIoControl(hHandle,IOCTL_SPI_GET_CONFIG,NULL,0,

&spiConfig,sizeof(spiConfig),&dwSize,NULL);

4.4 Structures and Macros
This section provides the details on the structures and macros used by interfaces
exposed by the SPI driver. All the structures and macros used by the interfaces are
defined in ioh_spi_common.h.

4.4.1 Structures

4.4.1.1 IOH_SPI_CONFIG

This structure holds the user supplied configuration information for configuring the SPI
controller.

4.4.1.2 IOH_SPI_RW

This structure is used for the read and write operation. It holds the configuration
details, data size and data.

4.4.2 Macros

Table 2. IOH_SPI_CONFIG Structure

Name Description

ULONG SlaveNo Slave device number

ULONG BaudRate Baud rate of the device

UCHAR BitsPerWord Transfer size 8 bit or 16 bit

UCHAR Mode Mode0,1,2,3 and MSB/LSB first

Table 3. IOH_SPI_RW Structure

Name Description

IOH_SPI_CONFIG SpiConfig Configuration information. Refer to “IOH_SPI_CONFIG” on page 10.

ULONG nSize Data size.

PVOID Buffer Data buffer.

Table 4. Enumerations (Sheet 1 of 2)

Name Description

IOH_SPI_CPHA SPI Clock Phase. This is used to specify SPI MODE information.

IOH_SPI_CPOL SPI Clock Polarity. This is used to specify SPI MODE information.

IOH_SPI_MODE_0 This specifies MODE as 0. CPHA = 0 and CPOL =0.

IOH_SPI_MODE_1 This specifies the SPI mode as 1.

Intel® Platform Controller Hub EG20T SPI Driver
February 2011 Programmer’s Guide
Order Number: 324260-002US 11

SPI Driver API Details—Intel® Platform Controller Hub EG20T

4.5 Error Handling
Since the IOCTL command is implemented using the Windows* API, the return value of
the call is dependent on and defined by the OS. On Windows*, the return value is a
non-zero value. If the error is detected within or outside the driver, an appropriate
system defined value is returned by the driver.

4.6 Inter-IOCTL Dependencies
There are no inter-IOCTL dependencies. Once the driver has been loaded successfully,
the IOCTLs stated above can be used in any order.

IOH_SPI_MODE_2 This specifies the SPI mode as 2.

IOH_SPI_MODE_3 This specifies the SPI mode as 3.

IOH_SPI_LSB_FIRST This configures the SPI hardware to perform transfer in LSB First data
transfer.

IOH_SPI_8_BPW This configures the SPI hardware to perform 8-bits per word data transfer.

IOH_SPI_16_BPW This configures the SPI hardware to perform 16-bits per word data
transfer.

IOH_SPI_ENABLE This is used by the IOCTL_SPI_ENABLE_INT ioctl to enable interrupts in
the SPI hardware.

IOH_SPI_DISABLE This is used by the IOCTL_SPI_DISABLE_INT ioctl to disable interrupts in
the SPI hardware.

Table 4. Enumerations (Sheet 2 of 2)

Name Description

Intel® Platform Controller Hub EG20T—Programming Guide

Intel® Platform Controller Hub EG20T SPI Driver
Programmer’s Guide February 2011
12 Order Number: 324260-002US

5.0 Programming Guide
This section describes the basic procedure for using the SPI driver from a user mode
application. All operations are through the IOCTLs exposed by the SPI driver. Refer to
Section 4.3 for details on the IOCTLs. The steps involved in accessing the GPIO driver
from the user mode application are described below:

• Open the device.
• Initialize and configure the driver with desired settings through the interfaces

exposed.
• Perform read/write operations.
• Close the device.

5.1 Opening the Device
SPI driver is opened using the Win32 CreateFile API. To get the device name, refer to
Section 5.1.1.

5.1.1 Using GUID Interface Exposed by the Driver

A device interface class is a way of exporting device and driver functionality to other
system components, including other drivers, as well as user-mode applications. A
driver can register a device interface class, and then enable an instance of the class for
each device object to which user-mode I/O requests might be sent. The topcliff IOH SPI
driver registers the following interface.

This is defined ioh_spi_common.h.

Device interfaces are available to both kernel-mode components and user-mode
applications. User-mode code can use SetupDiXxx functions to find out about
registered, enabled device interfaces.

Please refer the following site to get the details about SetupDiXxx functions.

http://msdn.microsoft.com/en-us/library/dd406734.aspx

5.2 Driver Configuration
The following IOCTLS are used to initialize and configure the settings for the SPI driver:

• IOCTL_SPI_CONFIG
• IOCTL_SPI_ENABLE_INT
• IOCTL_SPI_DISABLE_INT
• IOCTL_GET_SPI_CONFIG

DeviceIoControl Win32 API is used for sending information to the SPI driver.

IOH_SPI_CONFIG spiConfig = {0};

spiConfig.SlaveNo = 1;

spiConfig.BaudRate = 10000;

No Interface Name

1 GUID_DEVINTERFACE_IOHSPI

Intel® Platform Controller Hub EG20T SPI Driver
February 2011 Programmer’s Guide
Order Number: 324260-002US 13

Programming Guide—Intel® Platform Controller Hub EG20T

spiConfig.BitsPerWord = IOH_SPI_8_BPW;

spiConfig.Mode = IOH_SPI_MODE_0;

DeviceIoControl(hHandle,IOCTL_SPI_CONFIG,&spiConfig,sizeof(spiConfig),

NULL,0,&dwSize,NULL);

...

DeviceIoControl(hHandle,IOCTL_SPI_GET_CONFIG,NULL,0,

&spiConfig,sizeof(spiConfig),&dwSize,NULL);

• IOCTL_SPI_ENABLE_INT

This IOCTL enables all the interrupts.

bRet = DeviceIoControl(hDevice,

IOCTL_SPI_ENABLE_INT,

NULL,

0,

NULL,

0,

&dwRet,

NULL);

• IOCTL_SPI_DISABLE_INT

This IOCTL disables all the interrupts.

bRet = DeviceIoControl(hDevice,

IOCTL_SPI_DISABLE_INT,

NULL,

0,

NULL,

0,

&dwRet,

NULL);

5.3 Read/Write Operation
IOCTL_SPI_READ and IOCTL_SPI_WRITE are used for read and write operations
respectively.

To perform Read/Write Operation, the device needs to be enabled.

IOH_SPI_CONFIG spiConfig = {0};

spiConfig.SlaveNo = 1;

spiConfig.BaudRate = 10000;

Intel® Platform Controller Hub EG20T—Programming Guide

Intel® Platform Controller Hub EG20T SPI Driver
Programmer’s Guide February 2011
14 Order Number: 324260-002US

spiConfig.BitsPerWord = IOH_SPI_8_BPW;

spiConfig.Mode = IOH_SPI_MODE_0;

DeviceIoControl(hHandle,IOCTL_SPI_CONFIG,&spiConfig,sizeof(spiConfig),

NULL,0,&dwSize,NULL);

DeviceIoControl(hHandle,IOCTL_SPI_ENABLE_INT,NULL,0,NULL,0,&dwSize,NULL);

IOH_SPI_RW ioData = {0};

ioData.SpiConfig = spiConfig;

ioData.buffer = write_buff;//array

ioData.nSize = 64;

DeviceIoControl(hHandle,IOCTL_SPI_WRITE,&ioData,sizeof(ioData),NULL,

NULL,&dwSize,NULL);

ioData.SpiConfig = spiConfig;

ioData.buffer = dummy_write_buff;//array

ioData.nSize = 64;

DeviceIoControl(hHandle,IOCTL_SPI_READ,&ioData,sizeof(ioData),ReadBuff,

sizeof(ReadBuff),&dwSize,NULL);

DeviceIoControl(hHandle,IOCTL_SPI_DISABLE_INT,NULL,0,NULL,0,&dwSize,NULL);

5.4 Close the Device
Once all the operations related to the SPI driver are completed, the device handle must
be freed by the application by calling the Win32 API CloseHandle.

CloseHandle(hHandle);

	Intel® Platform Controller Hub EG20T
	Contents
	Tables

	Revision History
	Legal Lines and Disclaimers

	1.0 Introduction
	2.0 Operating System (OS) Support
	3.0 Dependencies
	4.0 SPI Driver API Details
	4.1 Features
	4.2 Interface Details
	Table 1. Supported IOCTLs

	4.3 IOCTL Usage Details
	4.3.1 IOCTL_SPI_CONFIG
	4.3.2 IOCTL_SPI_ENABLE_INT
	4.3.3 IOCTL_SPI_DISABLE_INT
	4.3.4 IOCTL_SPI_READ
	4.3.5 IOCTL_SPI_WRITE
	4.3.6 IOCTL_SPI_GET_CONFIG

	4.4 Structures and Macros
	4.4.1 Structures
	4.4.1.1 IOH_SPI_CONFIG
	Table 2. IOH_SPI_CONFIG Structure

	4.4.1.2 IOH_SPI_RW
	Table 3. IOH_SPI_RW Structure

	4.4.2 Macros
	Table 4. Enumerations (Sheet 1 of 2)

	4.5 Error Handling
	4.6 Inter-IOCTL Dependencies

	5.0 Programming Guide
	5.1 Opening the Device
	5.1.1 Using GUID Interface Exposed by the Driver

	5.2 Driver Configuration
	5.3 Read/Write Operation
	5.4 Close the Device

